### Keynote II







European DAO Workshop (DAWO24)

On Blockchain Governance

## **Fabian Schär**

PROFESSOR FOR DLT (BLOCKCHAIN) AND FINTECH, UNIVERSITY OF BASEL





Faculty of Business and Economics

## On Blockchain Governance: Insights from Various Research Projects Keynote @DAWO24, ZHAW

Fabian Schär, Univeristy of Basel





Schär (2021) Decentralized Finance: On Blockchain- and Smart Contract-based Financial Markets.

### **Prior Research on Crypto Governance in Our Research Group**

| Aggregation Layer | Aggregator 1                                | Aggregator 2 Aggregator 3                                  |  |  |  |  |  |
|-------------------|---------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Application Layer |                                             |                                                            |  |  |  |  |  |
| Protocol Layer    | Exchange  Lending  Derivatives  Asset Mngmt |                                                            |  |  |  |  |  |
| Asset Layer       | Native Protocol                             | Fungible Token:  Non-Fungible Token:    ERC20  ERC721/1155 |  |  |  |  |  |
| Settlement Layer  | Asset (ETH) (Ethereum) Blockchain           |                                                            |  |  |  |  |  |

Nadler and Schär (2022) → Governance token ownership

Goldberg and Schär (2023) → DAO voting behavior

#### Schuler, Cloots and Schär (2024)

 $\rightarrow$  Centralization vector analysis across all layers

#### Fracassi, Khoja and Schär (2024)

 $\rightarrow$  Governance and transparency on settlement layer development.

### ERC20 Holder Tables can be misleading...

### A Naïve observation...

| Address                                    | Balance      | Percentage |
|--------------------------------------------|--------------|------------|
| 0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B | 1,701,410.91 | 17.01%     |
| 0xc3d688B66703497DAA19211EEdff47f25384cdc3 | 900,000.35   | 9.00%      |
| 0xF977814e90dA44bFA03b6295A0616a897441aceC | 369,711.56   | 3.70%      |
| 0x73AF3bcf944a6559933396c1577B257e2054D935 | 351,441.46   | 3.51%      |
| ØxfA9b5f7fDc8AB34AAf3099889475d47febF830D7 | 305,957.27   | 3.06%      |
| 0x3f4aa3Aa9Fa1AFe43897627A9A964235C0bF9375 | 284,576.62   | 2.85%      |
|                                            |              |            |





#### **Naïve Observation:**

• Account with very large token holdings.



#### **Naïve Observation:**

• Account with very large token holdings.

#### Reality

• Thousands of liquidity providing accounts with partial ownership.





#### **Naïve Observation:**

- One Account with very large token holdings.
- One Account with very large LP token holdings.



#### **Naïve Observation:**

- One Account with very large token holdings.
- One Account with very large LP token holdings.

#### Reality

• Thousands of liquidity providing accounts and farming accounts with partial ownership.

Token Wrapping Nadler and Schär (2022)



Manual contract analysis → Automated Remapping (Multiple Levels) Our Algo lead to two proposal: 1. Ownership Concentration 2. Wrapping Complexity

| Alg | orithm 1 Iterative Mapping Process               |
|-----|--------------------------------------------------|
| 1:  | $H \leftarrow$ initial token holder table        |
| 2:  | repeat                                           |
| 3:  | sort $H$ by token value, descending              |
| 4:  | for all $h \in \text{top } 1,000$ rows of $H$ do |
| 5:  | identify and categorize $h$                      |
| 6:  | apply inclusion logic to $h$                     |
| 7:  | if $h$ is mappable then                          |
| 8:  | map $h$ according to its category                |
| 9:  | end if                                           |
| 10: | end for                                          |
| 11. | until no manaphle name found in last iteration   |

- 11: **until** no mappable rows found in last iteration
- 12: **assert** every row with more than 0.1% of the total relevant supply is properly identified and categorized

|                 | Min    | 1st Qu. | Median | Mean   | 3rd Qu. | Max    |
|-----------------|--------|---------|--------|--------|---------|--------|
| Top 5 VP share  | 0.0718 | 0.1428  | 0.2468 | 0.2672 | 0.3194  | 0.5692 |
| Majority owners | 2.00   | 14.50   | 23.50  | 45.61  | 50.75   | 166.00 |
| Gini500         | 0.5531 | 0.6723  | 0.7843 | 0.7581 | 0.8294  | 0.9561 |

Table: Based on 18 most important DeFi governance tokens.

- For Top 5 VP Share and Majority Voters, these numbers must be interpreted as a best-case scenario (lower and upper bound respectively).
- Undetectable sybil and collusion attacks may make things worse.

### Wrapping Complexity (Rehypothecation)



Nadler and Schär (2022)

46

University of Basel

Faculty of Business and

### **Prior Research on Crypto Governance in Our Research Group**

| Aggregation Layer | Aggregator 1                                | Aggregator 2 Aggregator 3                                  |  |  |  |  |  |
|-------------------|---------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Application Layer |                                             |                                                            |  |  |  |  |  |
| Protocol Layer    | Exchange  Lending  Derivatives  Asset Mngmt |                                                            |  |  |  |  |  |
| Asset Layer       | Native Protocol                             | Fungible Token:  Non-Fungible Token:    ERC20  ERC721/1155 |  |  |  |  |  |
| Settlement Layer  | Asset (ETH) (Ethereum) Blockchain           |                                                            |  |  |  |  |  |

Nadler and Schär (2022)

 $\rightarrow$  Governance token ownership

Goldberg and Schär (2023) → DAO voting behavior

#### Schuler, Cloots and Schär (2024)

 $\rightarrow$  Centralization vector analysis across all layers

#### Fracassi, Khoja and Schär (2024)

 $\rightarrow$  Governance and transparency on settlement layer development.

### A Casual Observation...



### **Relative Time of Vote in Relation to Voting Power**



Figure 3: Relative time of vote for different categories of VP.

### Would Ignoring the Most Powerful Voters Change the Outcome?

|            |      |        | Number of Abstaining Voters |        |        |        |        |
|------------|------|--------|-----------------------------|--------|--------|--------|--------|
| Type       | Obs. | 1      | 2                           | 3      | 5      | 10     | 25     |
| Ban Name   | 64   | 0.1094 | 0.1562                      | 0.1719 | 0.2500 | 0.5625 | 0.9531 |
| Catalyst   | 2    | 0.5000 | 0.5000                      | 0.5000 | 0.5000 | 0.5000 | 1.0000 |
| Grant      | 388  | 0.1057 | 0.1830                      | 0.2629 | 0.3737 | 0.5799 | 0.8660 |
| POI        | 362  | 0.1796 | 0.2790                      | 0.3481 | 0.4475 | 0.6381 | 0.8370 |
| Wearables  | 50   | 0.1400 | 0.2000                      | 0.2800 | 0.4200 | 0.5600 | 0.8000 |
| Poll       | 508  | 0.2657 | 0.3740                      | 0.4646 | 0.5630 | 0.7165 | 0.9350 |
| Draft      | 25   | 0.0400 | 0.1600                      | 0.2400 | 0.3600 | 0.4800 | 0.6400 |
| Governance | 15   | 0.1333 | 0.1333                      | 0.1333 | 0.3333 | 0.4000 | 0.6000 |

Table 3: Marginal voter analysis: Ratio of proposal outcomes that could have been changed for a given number of abstaining voters.

### **Prior Research on Crypto Governance in Our Research Group**

| Aggregation Layer | Aggregator 1                                | Aggregator 2 Aggregator 3                                    |  |  |  |  |  |
|-------------------|---------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Application Layer |                                             |                                                              |  |  |  |  |  |
| Protocol Layer    | Exchange  Lending  Derivatives  Asset Mngmt |                                                              |  |  |  |  |  |
| Asset Layer       | Native Protocol                             | Fungible Token:<br>ERC20  Non-Fungible Token:<br>ERC721/1155 |  |  |  |  |  |
| Settlement Layer  | Asset (ETH)                                 | (Ethereum) Blockchain                                        |  |  |  |  |  |



#### Fracassi, Khoja and Schär (2024)

 $\rightarrow$  Governance and transparency on settlement layer development.

### **Prior Research on Crypto Governance in Our Research Group**

| Aggregation Layer | Aggregator 1                                | Aggregator 2 Aggregator 3                                  |  |  |  |  |  |
|-------------------|---------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Application Layer |                                             |                                                            |  |  |  |  |  |
| Protocol Layer    | Exchange  Lending  Derivatives  Asset Mngmt |                                                            |  |  |  |  |  |
| Asset Layer       | Native Protocol                             | Fungible Token:  Non-Fungible Token:    ERC20  ERC721/1155 |  |  |  |  |  |
| Settlement Layer  | Asset (ETH)                                 | (Ethereum) Blockchain                                      |  |  |  |  |  |

Nadler and Schär (2022)

 $\rightarrow$  Governance token ownership

Goldberg and Schär (2023) → DAO voting behavior

#### Schuler, Cloots and Schär (2024)

 $\rightarrow$  Centralization vector analysis across all layers

Fracassi, Khoja and Schär (2024)

 $\rightarrow$  Governance and transparency on settlement layer development.



# Decision-Making in Ethereum Governance How does it work?

### An Introduction to Open Source Communities and Rough Consensus

"We reject: kings, presidents, and voting. We believe in: rough consensus and running code."

David Clark – IETF, 1992

- Anyone can do whatever they want.
- No formal voting or people with special privileges who can force a change.
- Question of who actually supports the change.
- Threat of fork.

### An EIP Example

### 🕞 Last Call Standards Track: Core EIP-4844: Shard Blob Transactions $\bigcirc$ $\diamond$ Shard Blob Transactions scale data-availability of Ethereum in a simple, forwardscompatible manner. Authors Vitalik Buterin (@vbuterin), Dankrad Feist (@dankrad), Diederik Loerakker (@protolambda), George Kadianakis (@asn-d6), Matt Garnett (@lightclient), Mofi Taiwo (@Inphi), Ansgar Dietrichs (@adietrichs) Created 2022-02-25 Last Call Deadline 2024-02-15 Requires Table of Contents



#### **EIP Discussion Venues**

- Github Repository
- Fellowship of Ethereum Magicians (Forum)
- Conferences and Twitter
- AllCoreDev Calls

### **EIP Categories**

#### Core:

→ Critical changes, mostly s.t. consensus fork.

#### Networking:

 $\rightarrow$  Changes to devp2p sub protocol

#### Interface:

→ API/RPC specs and language level standards

#### ERC:

→ Application level conventions

#### Meta:

 $\rightarrow$  Meta proposals, e.g. fork spec

#### Informational:

→ Information or guidelines. No new features or changes.

#### Figure 2. : Number of EIPs by Year

This table shows the number of EIPs by category (left axis) and the number of unique authors (right axis) over time. Year 2023 numbers are incomplete, as data collection ended on June 21.



# Decision-Making in Ethereum Governance How concentrated is it?

### **EIP Top Authors (All Categories)**



### **EIP Top Authors (ERC/Interface and Implemented Core/Network)**



#### Finalized (ERC/Interface)

#### Vitalik Buterin Martin Holst Swende Alex Beregszaszi Pawel Bylica Christian Reitwiessner Tim Beiko Péter Szilágyi James Hancock Danny Ryan Mikhail Kalinin 15 0 5 10 20 N. of Implemented Core/Network. EIPs

#### Implemented (Core/Network)

### Author Lorenz Curve by Category (#of Authors and Percentile)



### **Gini Coefficient of EIP Production Over Time**

Figure 9. : Concentration of EIP Production over Time

This table shows the Gini coefficient for each two-year rolling window. Year 2023 numbers are incomplete, as data collection ended on June 21.



### **EIP Co-Authorship Network**



#### **Computing the Clustering Coefficient:**

$$C = \frac{1}{n} \sum_{i} C_{i} = \frac{1}{n} \sum_{i} \frac{\sum_{j,k} A_{i,j} A_{j,k} A_{k,i}}{\sum_{j} A_{i,j} (\sum_{j} A_{i,j} - 1)}$$



### Clustering Coefficient and Avg. N. of Co-Authors Over Time



**Concentration wrt Companies and Organizations** 









### **Company Affiliation by Number of Authors and EIPs**



#### Number of Authors

Number of EIPs

### **Influence of Ethereum Foundation Over Time**



## Decision-Making in Ethereum Governance What determines EIP success?

### **EIP Finalization/Implementation Success Factors**

|                            | Finalized     |                                         |               |                               | Implemented   |                 |
|----------------------------|---------------|-----------------------------------------|---------------|-------------------------------|---------------|-----------------|
|                            | All           | $\operatorname{All}\operatorname{EIPs}$ |               | $\mathbf{ERC}\ \mathbf{EIPs}$ |               | $e 	ext{ EIPs}$ |
|                            | (1)           | (2)                                     | (3)           | (4)                           | (5)           | (6)             |
| Social Influence Index     | $0.077^{***}$ | $0.112^{***}$                           | $0.070^{***}$ | $0.103^{*}$                   | 0.080***      | $0.097^{***}$   |
|                            | (4.18)        | (3.80)                                  | (2.64)        | (1.98)                        | (2.83)        | (2.64)          |
| N. EIP Authors             | 0.066***      | 0.083***                                | 0.052**       | $0.070^{*}$                   | $0.121^{***}$ | $0.105^{**}$    |
|                            | (3.41)        | (3.25)                                  | (2.35)        | (1.90)                        | (3.57)        | (2.44)          |
| N. Words in EIP (k)        | 0.016         | -0.025                                  | 0.052**       | 0.033                         | -0.081**      | -0.130***       |
|                            | (0.87)        | (-0.94)                                 | (2.41)        | (0.92)                        | (-2.46)       | (-4.31)         |
| Readability Score          | 0.002         | 0.001                                   | $0.004^{**}$  | 0.004                         | -0.003        | -0.007**        |
|                            | (1.19)        | (0.23)                                  | (2.14)        | (0.86)                        | (-1.19)       | (-2.06)         |
| Community Engagement Index |               | 0.026**                                 |               | 0.045                         |               | 0.027           |
|                            |               | (2.00)                                  |               | (1.12)                        |               | (1.58)          |
| Category FE                | Yes           | Yes                                     | Yes           | Yes                           | Yes           | Yes             |
| Company FE                 | Yes           | Yes                                     | Yes           | Yes                           | Yes           | Yes             |
| Year FE                    | Yes           | Yes                                     | Yes           | Yes                           | Yes           | Yes             |
| Observations               | 431           | 220                                     | 249           | 107                           | 178           | 112             |
| Adjusted $R^2$             | 0.33          | 0.28                                    | 0.40          | 0.31                          | 0.35          | 0.31            |
|                            |               |                                         |               |                               |               |                 |

### **Revisiting Company / Organization Effects**

Figure 19. : Company FE Coefficients

This figure shows the coefficients of the company dummies in specification (4) of table 3



# Decision-Making in Ethereum Governance What is the effect of community engagement?

### **Community Engagement on «Ethereum Magicians» Forum**



### **Community Engagement Determinants**

|                         | (1)         | (2)         | (3)        | (4)             |
|-------------------------|-------------|-------------|------------|-----------------|
|                         | N. Comments | N. Views    | N. Likes   | N. Unique Users |
| Number of EIP Authors   | 2.40        | 677.86      | 1.05       | 0.62            |
|                         | (1.17)      | (1.45)      | (0.53)     | (1.26)          |
| Twitter Followers (log) | 0.86*       | 372.75***   | $1.27^{*}$ | 0.39***         |
|                         | (1.70)      | (3.75)      | (1.66)     | (2.71)          |
| GitHub Followers (log)  | -0.15       | -110.08     | -0.90      | 0.01            |
|                         | (-0.15)     | (-0.61)     | (-0.73)    | (0.04)          |
| Betweenness Centrality  | 247.80      | 83586.88    | 92.11      | 49.50           |
|                         | (0.78)      | (1.16)      | (0.30)     | (0.68)          |
| Anonymous Author        | -2.16       | 315.33      | -0.67      | 0.64            |
|                         | (-0.54)     | (0.39)      | (-0.19)    | (0.51)          |
| Word Count              | 0.01**      | 0.90**      | 0.01**     | 0.00**          |
|                         | (2.44)      | (2.12)      | (2.02)     | (2.07)          |
| Readability             | 0.01        | -38.82      | -0.15      | -0.01           |
|                         | (0.05)      | (-1.11)     | (-0.74)    | (-0.22)         |
| ERC                     | -13.29**    | -3703.27*** | -11.93**   | -3.73***        |
|                         | (-2.44)     | (-3.49)     | (-2.15)    | (-2.68)         |
| Interface               | -3.61       | -1222.57    | 1.49       | 0.47            |
|                         | (-0.62)     | (-0.74)     | (0.25)     | (0.25)          |
| Networking              | -16.05***   | -4365.58*** | -10.87**   | -3.89*          |
|                         | (-2.92)     | (-4.31)     | (-2.06)    | (-1.88)         |
| Year FE                 | Yes         | Yes         | Yes        | Yes             |
| Observations            | 346         | 346         | 346        | 346             |
| Adjusted $R^2$          | 0.10        | 0.17        | 0.05       | 0.13            |

# Decision-Making in Ethereum Governance Client and Reverse Dependency

#### Figure 21. : History of Forks

This figure shows the timeline of the major Ethereum hard forks.



### **Client Development Concentration by Commits**



### **Client Development – Organization Influence**



Panel (a) shows the percentage of Total Value Locked (TVL) in liquidity pools that include one of the three major stablecoins USDC, USDT, and DAI over time. Panel (b) shows the TVL market share for each of the three major stablecoin USDC, USDT, and DAI over time.



(a) Stablecoin Percentage in All Liquid- (b) Market Share of Major Stablecoin ity Pools Issuers

#### Figure 23. : Oracle Concentration

Panel (a) shows the percentage of Total Value Locked (TVL) in liquidity pools that use a specific oracle provider. Panel (b) shows the number of protocols that use a specific oracle provider. Data from DefiLlama.com



# Conclusion Key Takeaways

- Ethereum governance is predominantly shaped by a core group of influential contributors.
- The success of these proposals is significantly driven by key attributes of the proposer, including their skills, social outreach and EIP engagement.
- The Developer calls are a critical forum for discussing and ratifying governance proposals.
- We observe a notable client developer concentration.
- We observe a large potential for reverse dependencies. Notable infrastructure providers, such as oracle networks and (off-chain collateralized) stablecoin issuers essentially have a veto right.
- The governance process is very transparent and the community engagement quite large.